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ABSTRACT

Particle-based hydrodynamics models offer distinct advantages over Eulerian and
Lagrangian hydrocodes in particular shock physics applications. Particle models are designed
to avoid the mesh distortion and state variable diffusion problems which can hinder the
effective use of Lagrangian and Eulerian codes respectively. However existing particle-in-cell
and smooth particle hydrodynamics methods employ particles which are actually moving
interpolation points. The latter distinction has been emphasized in the more recent
development of element-free Galerkin theory. As a result general formulations of all of the
aforementioned methods are based on the partial differential equation forms of the
continuum balance laws which underlie conventional Eulerian and Lagrangian schemes. An
alternative modeling methodology, based on the application of Hamilton's equations to a
system of deforming physical particles, provides a fully Lagrangian, energy-based approach
to shock physics simulations. Neither interpolations of field variables nor continuum balance
laws are used to establish the state equations for the particle system. Mechanical and thermal
interaction of the particles is accounted for by nonholonomic constraints which determine
both particle entropy evolution and particle collision loads. Application of the method is
illustrated by simulation of wall shock, Whipple shield, and multi-plate shield impact
problems. A three dimensional, vectorized and autotasked implementation of the particle
model presented here has been coded for application to orbital debris shield design

simulations.
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INTRODUCTION

Most numerical models for shock physics simulations (Anderson, 1987) have been
based on continuum balance laws for mass, momentum, and energy formulated in
Eulerian, Lagrangian, or arbitrary Lagrangian-Eulerian (ALE) reference frames (Benson,
1992). Examples are the Eulerian finite volume code CTH (McGlaun et. al, 1990), the
Lagrangian finite element code DYNA3D (Goudreau and Hallquist, 1982), and the
arbitrary Lagrangian-Eulerian code RHALE (Budge and Peery, 1993). Such codes have
seen extensive and successful application to a wide range of problems. Despite this
success, the effective use of any continuum based model in some astrophysics (Benz et. al,
1986) and engineering design (Hertel, 1993) applications has proven quite difficult. For
example, mesh distortion in Lagrangian finite element codes and difficulties in tracking
highly fragmented solid bodies in Eulerian hydrocodes have made continuum-based
simulations of particular hypervelocity impact problems impractical (Fahrenthold, 1993
and 1995). The limitations of continuum based codes in certain shock physics applications
has been in part responsible for the development of alternative particle-based methods for
hydrodynamics simulations.

Most particle-based hydrodynamics models employ either a particle-in-cell (PIC)
or a smooth particle hydrodynamics (SPH) approach. The basic PIC method (Monaghan,
1985) and its extensions (Sulsky et. al, 1994) employ nondeforming mass fixed particles
and a space fixed grid. Mapping of field variables back and forth between the particles and
the grid serves to define the gradients of field variables, establish the update of the particle
properties, and advect the particles with their associated internal states. The basic SPH
method (Monaghan, 1992) and its extensions (Libersky et. al, 1993) again employ
nondeforming mass fixed particles, in this case with moving interpolation functions. In
SPH the moving interpolation functions define the gradients of field variables, allow for
updating of the particle properties, and determine the motion of the particles with their

associated internal states. As emphasized in recent work on the development of element-



free Galerkin (EFG) methods (Lu et. al, 1995), the 'particles' of the PIC, SPH, and EFG
formulations are in fact moving interpolation points. As a result, general formulations of all
the above methods rely at least in part on the partial differential equations of continuum
mechanics in establishing a system level model - usually the mass, momentum, and
energy balance laws which underlie conventional Eulerian finite difference and Lagrangian
finite element models of shock physics problems.

As an alternative to existing particle based methods, the present report applies
Hamilton's equations to a system of translating, deforming, and thermomechanically
interacting physical particles, to obtain a three dimensional hydrodynamic model for shock
physics simulations. The method is energy based and hence simple to formulate, with no
need to consider continuum balance laws, interpolation functions, or weighted residual
solution techniques. Since the particle kinematics, energy functions, and constraints are
fully Lagrangian in form, the method avoids the diffusion problems typically associated
with interpolation on space fixed meshes (McGlaun et. al, 1990) and the stability problems
observed with some moving interpolations (Swegle et. al, 1995). Although previous work
has made limited use of entropy states (Monaghan, 1992 and Brown, 1981), total entropy
variables appear here as generalized coordinates for the particles, subject to nonholonomic
thermal constraints describing heat conduction and energy dissipation. Additional
nonholonomic constraints on the particle coordinates and deformation gradients are
introduced, in order to represent mechanical interaction of the particles. The latter approach
avoids the introduction of essentially Eulerian potential energy functions (Monaghan,
1988) or the remapping of data between the particles and a grid (Sulsky et. al, 1994) in
order to quantify collision forces. Finally the fully Lagrangian frame of reference used here
means that no mixing or partial pressures expression (McGlaun et. al, 1990 and Monaghan
and Kocharyan, 1995) is needed to represent the multi-material case.

The succeeding sections are organized as follows. First the particle kinematics are

specified. Next the system Hamiltonian is formed by defining kinetic and potential energy



expressions. This identifies the generalized coordinates and momenta which serve as state
variables. Next the viscosity and heat conduction models are formulated, as well as the
thermal and mechanical constraints which act on the system. Finally the preceding results
are applied to establish Hamilton's equations, specifically a first order state space model for
the particle system, in explicit rate form. Simulation of wall shock, Whipple shield impact,

and multi-plate shield impact problems illustrate numerical application of the method.

KINEMATICS

The physical system modeled here is a collection of 'n' deforming spherical
particles, interacting in both the mechanical and thermal domains, with the fixed mass of
particle 'i' denoted by m(D) (i=1,2, .., n). For homogeneously deformed particles, the

position (x) and velocity (x) of a material point in particle 'i' are expressed as
x = F() (r- rcm(i) )+ . x= £ (r- rcm(i) )+ ¢ (1a,b)

where r and rcm(i)

are the positions of the material point and the particle center of mass
respectively in the reference configuration, ¢ is the current position of the particle center
of mass, F(1) is the particle deformation gradient, and a superposed dot denotes the total
time derivative. The particle volume in the current (V1)) and reference (V(é))

configurations are related by (Malvern, 1969)

VOVD = gt = FD3 (lc)
For spherical particles,
v = (4r/3) H®3 (1d)

where the particle radius (h(i)) is
D) 5 . 13
h(D = h F) h((l))- [3v((;)/(4n)] (le,f)

Note that ¢() and F() are generalized coordinates which describe the particle motion.



KINETIC ENERGY

The system kinetic co-energy (T*) is

n . .
T = z T ;. T'0O=(p) jp X+ dV (2a,b)
1= v

Using equations (1), exact evaluation of the integral (2b) yields

n
T = (1/2) '21 [ m() ¢@W2 4 (0 512 (2c)
i=

where JD) is a (constant) moment of inertia calculated in the reference configuration

g = (m(i)/v((i))) j (r-rcm(D) . (p_pem(i)y dv, 2d)
vl
The kinetic co-energy expression (2c) defines the system momenta as
* *
p® = T _ e . g® = I 50 ) 2e.
ac) oEM

Finally a Legendre transform allows the kinetic energy (T) to be written as a function of the
center of mass momenta (p(i)) and distributed momenta (H(i))

n
T={ = [p®.¢® 4+ gD ED ) - T (2g)

i=1
n » - . - . .
T= (1/2) £ [mD-1pD2 4 yD)-1 g2 ]=T1rD, HD) (2h)
i=1
The distributed momentum accounts for the kinetic energy of expansion or compression of

the particles.

INTERNAL ENERGY
The Hamiltonian approach used here incorporates general thermal and mechanical

dynamics, hence the conserved potential is the total internal energy (U). For a mass fixed



system with the particle kinematics previously outlined, the exact expression for the total

internal energy is

n
U= T m® u®(p®, s0)) (3a)
i=1

where u®, p(1) and s() are the internal energy per unit mass, density, and entropy per unit
mass for particle 'i'. Since the latter two variables are related to the total particle entropy

(S(i)) and deformation gradient by

sO=m@ @ oD = gerFD) = D3 (3bc)

where pg) is the density in the reference configuration, it follows that the system internal
energy can be expressed as a function of the "2n' generalized coordinates F() and s
U = U, s(i)y (3d)

Hence the generalized conservative forces for the system may be calculated as

. aU . . . . oU
M- U _ 3vOpp02 . = U
G e 3 Vo P\WWF ;U e (3e.D)
where
PO 3u C
o g
o2 = 50 8T 5@ Geh

define the pressure (P(i)) and temperature (e(i)) for particle 'i'. Since equations (3a) through
(3h) are exact, the generalized conservative forces may be calculated for any equation of
state

P = pM(pd @y o= gl pd,s)) (3i,j)

derived from an appropriate internal energy function.

SHEAR AND BULK VISCOSITY
Particle methods normally incorporate a numerical viscosity, in order to avoid
particle streaming effects and accurately reproduce shock waves (Monaghan and Gingold,

1983). In the present model there are two deformation modes which must be damped. For



the relative motion of particle centers of mass, a 'shear viscosity' force may be assumed to
act on the mass centers. The simplest form for such a damping force is one which acts
along a line joining the mass centers of two neighboring particles and is proportional to the

relative velocities of the particles

n -
fD = 5 pl@d) (@D - e0)y. (D - cbyy @ - @)@ - 02 (42)
j=1
where u(i’j) is the damping coefficient associated with the interaction of particles 'i' and 'j'.

Previous work in shock simulations (Noh, 1978) suggests a damping coefficient of the

form
pdd = ¢ o (112) ( p() C(si) AD +p0) c(sj) INOAY IO (4b)
AD=gn®2 ;D= g 4172 (4c,d)

where A(i), c(si), and K() are the (variable) cross sectional area, sound speed, and bulk

modulus of particle 'i', ¢, is a dimensionless shear viscosity coefficient, and the step

function 'A' is defined by
AlL1=1 for {20 ; A[£]=0 for {<O (4e)
£@d) = (D40 - 1D - O (4f)

The step function ensures that only neighboring particles interact.
In order to damp the volumetric deformation mode of individual particles, a 'bulk
viscosity' is required. Here a viscous 'pressure’ (specifically an isotropic first Piola-Kirchoff

stress) is introduced with the simple form
pBO) =y ED . )= cp p® C(si) h(® (5a,b)

where v() is a bulk viscosity with ¢; a dimensionless coefficient.



HEAT CONDUCTION

As in the case of the viscosity, accurate representation of shocks normally calls for
the introduction of a heat conduction or artificial heat flux model (Noh, 1978). With the
particle entropy serving as generalized coordinate, heat conduction is appropriately
represented here using the entropy rate form

n
scon(i) = (1/8()y x RGD 9D - gl)y (62)
J=1

where RU+) is the overall heat transfer coefficient describing conduction between particles

i and ',
RGD = ¢y (172) (pD B D AD) 4 p@ I D AG) ) A[gliay (6b)

with c(\:) the (variable) specific heat for particle 'i' and ¢, a dimensionless heat conduction

coefficient. Again only neighboring particles interact.

MECHANICAL AND THERMAL CONSTRAINTS

The adoption of a purely Lagrangian frame of reference has simplified the
formulations in the preceding sections, but it somewhat complicates the treatment of
constraints. In place of conventional energy balance equations, evolution equations for the

entropy are introduced here, in the form of the nonholonomic constraints

S(i) - Shr(i) ) Scon(i) (7a)

where ST g the rate of irreversible entropy production in particle 'i'. The latter quantity is

calculated from the energy dissipation rate (W (i)) associated with shear and bulk viscosity

effects

) girr() _ (1706w (7b)
where



WD = D). ¢ - v pB) R = (0. ¢ + BO ED (70)

GBW = ¢; p® W p) v g (7d)
The coefficients of the generalized velocities (é(i) and F(i)) in the nonholonomic constraints
(7a) will give rise to nonconservative generalized forces in the system level state equations.

The mechanical constraints on the particles arise from particle collisions.

Specifically the generic particles 'i' and 'j' must satisfy the inequality constraints

Ic® -cD-amD+nly 20 ; a=@we)l3 (8a,b)

where the factor a allows for 'body-centered’ cubic packing of particles at the reference

density. In rate form the last expression is

[ €@ -e0y/1e® - cOiy. @@ - ey -a{ h(ci>) ) 4 h((i)) Fi)y >0 (8¢)

As is often the case, the inequality constraints introduced here call for a somewhat ad hoc
treatment. In the next section they are accounted for by the introduction of Lagrange
multipliers, which then give rise to additional generalized forces in the system level state

equations.

HAMILTON'S EQUATIONS
The preceding description of stored energy functions and constraint equations
allows for formulation of a system level Hamiltonian model (Ginsberg, 1988). The

Hamiltonian (IT) for the system is
M=T+U=I(pD, D, gO F) s (9a)
The canonical form of Hamilton's equations is therefore (fori= 1, 2, ..., n)

(i : (i oIl
p(l) =- ﬁ + q(l) : ¢ = @ (9b,0)



aIl

- oIl . »

() = . £ 4 oF (1) = 2=
H “FD +Q . F ) (9d.e)
0=- az%) +QS® 9f)

where q(i), QF(i), and Qs(i) are the generalized nonconservative forces, which must be
calculated here from the thermal and mechanical constraints. If Y(i) are Lagrange
multipliers for the entropy evolution constraints (7a), and AU are Lagrange multipliers for

the particle interaction constraints (8c), it follows that

QS = 4 (102)
QF(® = . (y(1)sg(D)y GB® 4 g¢W) (10b)
q® =- («Y(i)/e(i)) £ 4 e (10c)

where the contributions
<) -;1 A () - @y /16D - (O (11a)

j=
Gge) = _ ';1 o h((i)) y\(8)) (11b)
j=

arise from the mechanical constraints and the remaining terms on the right hand sides of
equations (10) are due to the nonholonomic entropy evolution constraints.
For an efficient solution procedure, elimination of the Lagrange multipliers is of

course desirable. Note that the last of Hamilton's equations requires

(i) = S() (11c)
and hence identifies the temperature as the Lagrange multiplier y(i) for the 'ith' entropy
evolution constraint equation. To avoid the considerable complication of taking the AG) 1o

be unknowns in a differential-algebraic formulation of the system level model, it is

advantageous to represent the latter quantities as penalty forces, by assuming

A = k() [ o (fD+hG)y - 16 - O] ALged)) (11d)



where the penalty stiffness is (Hallquist, 1983)

k(1)) = ¢ max{ KO A2/ v g0 A0)2/ v() ) (11e)
and

¢e(i) = o (h(D4+h0)) - ¢ - c0)) (11f)

with c¢3 a dimensionless penalty stiffness. Note that the use of a Lagrange multiplier

technique here serves the essential task of properly scaling the contributions of the collision
forces AU) in the evolution equations for both the center of mass momenta and the
distributed momenta.

Combining the expressions (9) through (11) yields the final form of Hamilton's

equations as

p® = - D) 4 e (12a)
¢ = -1 p® (12b)
g = . g . gBW 4 g (12¢)
F() = jO-1 5@ (12¢)

g _ girr(@) _ geon(i) (12d)
Perusal of the preceding sections shows that the relations (12) are in fact explicit rate

equations for the state variables p(i), c(i), H(i), F(i), and S(i) i=1,2,..n).

NUMERICAL IMPLEMENTATION

Several other points relevant to numerical implementation should be noted.
Symmetry boundary conditions may be applied by extending the penalty approach used in
the preceding sections to account for particle collisions. For example, for model symmetry

about the plane z = 0, it is appropriate to introduce additional constraint forces for each

particle in the form

10



11

£2(0) = c5 (KO ADO27 vD) [ 0 h® - min{ o h®, D iy ] i, (13a)

G20 = _ c3 0 h((i)) (KD AW vy [ o h® -

min{ o h®, M. i, }] (13b)
where 1, is a fixed basis vector.

If a Runge-Kutta or leap-frog (Libersky et. al, 1993) algorithm is used to integrate

the system state equations, a variable time step may selected as follows:

At = (lcg) Wiy 2 (142)
Winax = max{ wi for k=1,2,3,..,6 and i=1,2,3,..,n (14b)
where ¢, is a dimensionless constant and the WS) are squared frequencies calculated using
wl((i) =Y mWDhy) 1 k=1,2,3 (14¢)
wg) = pM2/mDh ;)2 + KDrpMn 2 ) (14d)
wl = met@ W = gnetymieD)2 (14e.0
hmin = min{ h® for i=1,2,3,..,n) (14g)

The net rates of change indicated in the last set of equations are defined as the right hand
sides of equations (12). The first four time step limits of (14c) and (14d) are used by
Monaghan and co-workers (Monaghan, 1992 and Monaghan and Lattanzio, 1985) while
the last two are appended here for the distributed momentum and entropy evolution
equations.

Finally linked lists (Hockney and Eastwood, 1981) may be used to identify the
nearest neighbors of each particle and thereby greatly reduce the effective lengths of the
summations in equations (4a), (6a), (11a), and (11b). Since each particle has a time varying
radius, the cell size used in the construction of linked lists is determined by the maximum

particle radius



12

hpax = max{ h® for i=1,2,3,..,n) (14h)

EXAMPLE SIMULATIONS
The example simulations discussed here were run using a three dimensional,
vectorized and autotasked implementation of the model discussed in the preceding sections

of the report. All of the examples take
co=0.05 ;€1 = 1.00 ; ¢cp=1.00 ; c3 =250 (15)

The first example is a one dimensional wall shock problem (Noh, 1978), applied to

an ideal gas with density shift, described by the equation of state

MO ¢, (80 - 0,) PO =(Z-1)c, 8 () - p ) (16a,b)
6 = 8, expl(sD - sy)iey] pPWrp 1% Y expl(z-1(p/p™-1)] (16¢)

where Z is the ratio of specific heats, 0, is the reference temperature, and s is the

reference entropy. Parameters of the simulation are shown in Table 1. This problem
represents the collision (at position x = 0 and time t = 0) and shock compression of two

particle streams with initial conditions
p=10 ; s=10 ; H=00 ; F=1.0 (17a)
c=+1.0 for x<0 and ¢=-1.0 for x>0 (17b)
Post shock conditions calculated from the Rankine-Hugoniot relations (Cole, 1948) are
v=00 ; p=2618 ; P=1618 ; 06=15 (18)

Figures 1 through 4 show good agreement of the exact and numerical velocity, density,

pressure, and temperature distributions at t = 0.8, with minimal shock smearing.



The second example represents the oblique (three dimensional) impact of a
spherical projectile on a Whipple shield at approximately seven kilometers per second.
Both the projectile and the shield were taken to be aluminum, with the material described
by a Mie-Griineisen equation of state. Parameters of the simulation are shown in Table 2.
Figure 5 shows the simulation results. Simulation of the shield perforation and debris
cloud evolution to initial impact on the wall plate required about one CPU hour on a Cray
T916.

The third example represents the oblique impact of a spherical projectile on a multi-
plate shield at approximately seven kilometers per second. Again both the projectile and
shield materials were taken to be aluminum, and a Mie-Griineisen equation of state was
used. Parameters of the simulation are shown in Table 3. Figure 6 shows impact of the
projectile and evolution of the debris cloud as successive shields are perforated. The
simulation required about six CPU hours on a Cray T916, without rezoning, in order to

reach initial impact on the wall plate.

CONCLUSION

The present report has presented a new numerical method for hydrodynamics
simulation, developed using a fully discrete Hamiltonian description of a system of
thermomechanically interacting physical particles. It relies exclusively on energy concepts,
as opposed to Eulerian or Lagrangian interpolation functions and partial differential
equation descriptions of the continuum dynamics. The kinematics, stored energy functions,
and constraints are all formulated in a fully Lagrangian frame of reference. In addition it
makes uniform use of entropy variables in accounting for all conservative and non-
conservative thermal effects. The preceding combination of modeling features makes the
present work a distinct departure from existing PIC, SPH, and EFG methods, as well as
more conventional Lagrangian, Eulerian, and arbitrary Lagrangian-Eulerian hydrocodes.

Specific advantages of the method include: (1) the simplicity of the formulation, (2) the

13



avoidance of stability problems which arise with the essentially Eulerian potential energy
formulations of generalized SPH, and (3) the elimination of the particle-to-grid and grid-to-
particle mappings associated with generalized PIC.

The present work does not address effects such as multi-phase flow (Monaghan
and Kocharyan, 1995) and fragmentation (Benz and Asphaug, 1995) which have been
incorporated into alternative modeling schemes, as those methods evolved. However the
fully Lagrangian formulation used here is clearly amenable to the treatment of multi-phase

problems and material nonlinearities in a hydrodynamic context.

14
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Table 1. Wall shock simulation

Reference density
Reference temperature
Reference entropy
Specific heat

Ratio of specific heats

Number of particles (-2 < x < +2)

1.0
1.0
1.0
1.0
5/3

400

17



Table 2. Whipple shield impact simulation

Projectile diameter
Shield thickness
Impact velocity
Impact obliquity
Material

Equation of state type

Reference density
Reference temperature

Specific heat

Initial Griineisen gamma
Hugoniot slope coefficient
Bulk sound speed

Number of particles
Total simulation time
CPU time (Cray T916)
Number of time steps

0.500 cm
0.127 cm
0.695 cm/pusec
30 degrees
aluminum

Mie-Griineisen

2.70 g/cm3
293°K

0.884 x 10~ Mb-cm3/(g-°K)

1.97
1.339
0.5386 cm/psec

3,136
17.0 psec
1.03 hrs
10,000

18



Table 3. Multi-plate shield impact simulation

Projectile diameter
Plate thickness
Plate spacing
Number of plates
Impact velocity
Impact obliquity
Material

Equation of state type

Reference density
Reference temperature

Specific heat

Initial Griineisen gamma
Hugoniot slope coefficient
Bulk sound speed

Maximum number of particles
Total simulation time

Number of time steps

CPU time (Cray T916)

0.320 cm
0.010 cm

2.50 cm

4

0.695 cm/usec
30 degrees
aluminum

Mie-Griineisen
2.70 g/cm>
293°K

0.884 x 107> Mb-cm3/(g-°K)
1.97

1.339

0.5386 cm/psec

23,468
18.0 usec
18,323
6.01 hrs
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